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Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also
demonstrated a large K � conductance, which led to the notion that glia may regulate extracellular K � levels homeostatically. This view
has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K � channel,
Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative
diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and
two-pore domain K � channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between
neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes
contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area
are highlighted within.

Introduction
Next year (2016) marks the 50 th anniversary of the first physiol-
ogy studies examining glial cells (Kuffler et al., 1966; Orkand et
al., 1966). These and other early seminal studies demonstrated

that glial cells rest at quite hyperpolarized resting membrane po-
tentials relative to neurons (by �20 mV) and that glia display
large and selective permeability to K� ions (Kuffler, 1967; Ran-
som and Goldring, 1973). Furthermore, due to the high selective
K� permeability, the glial resting membrane potential was pre-
dicted by the Nernst equation for K� (Kuffler, 1967; Ransom and
Goldring, 1973). These electrophysiological properties, the spa-
tial arrangement in the CNS between astrocytes and neurons, and
extensive astrocyte coupling via low-resistance intercellular path-
ways formed by gap junctions led to the formation of the K�

spatial buffering hypothesis.
The biophysical characteristics described above are still used

today by neurophysiologists to identify astrocytes within in situ
and in vivo preparations during electrophysiological recordings.
Work from multiple groups of investigators indicates that the
large K� leak conductance reflects the intrinsic property of mem-
brane ion channels and appears to be a general functional feature
of mature astrocytes (Dallérac et al., 2013; Du et al., 2015). Astro-
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Significance Statement

The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in
animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1,
hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and
plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.
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cytes exhibit low input resistances, often �20 M�, as a result of
the K� leak conductance, which represents a formidable barrier
for the measurement of channel activity using traditional electro-
physiological methods. This has proved particularly challenging
for measuring ion flux at sites located distal to somata (Ma et al.,
2014), particularly at perisynaptic and perivascular sites, where
homeostatic support functions of K� channels are expected to
contribute the most. The exact molecular signatures of the chan-
nels that orchestrate these membrane properties are unresolved,
but appear to be due in part to the weakly rectifying K� channel
Kir4.1 and two-pore domain K� channels. We discuss the latest
findings of this critical channel in normal astrocyte and CNS
function.

Work over the past two decades has led to multiple proposed
pathways in astrocytes, such as Ca 2�-dependent exocytotic re-
lease of ATP and glutamate, that maintain and regulate synaptic
transmission/plasticity (Panatier et al., 2011; Agulhon et al.,
2012a; Araque et al., 2014; Haydon and Nedergaard, 2015).
Meanwhile, a growing list of channels that are not K� selective
but are expressed in astrocytes has been revealed. These channels
regulate neurotransmission through various novel mechanisms,
which is the focus of this discussion. We term this group of chan-
nels “signaling channels,” thus alluding to their primary involve-
ment in astrocyte–neuron crosstalk. All of the signaling channels
identified to date are poorly ion selective or nonselective cation/
anion channels. We briefly discuss the latest developments on the
calcium-activated anion channel bestrophin1 (Best-1), connexin
43 hemichannels, and the two-pore K� channel TWIK-1 and
TREK-1 (Lee et al., 2010; Woo et al., 2012; Wang et al., 2013;
Chever et al., 2014). Although not an exhaustive list, these chan-
nels have received recent attention regarding astrocyte–neuron
communication in the context of normal CNS function and in
the pathological brain and will be discussed below.

Kir4.1: an integral ion channel in astrocyte biology
Kir4.1 is a weakly inwardly rectifying K� channel, which in the
nervous system is expressed exclusively in glial cells, with highest
expression in astrocytes. In astrocytes, putative functions of
Kir4.1 include K� homeostasis, maintenance of the astrocyte
resting membrane potential, high astrocyte K� conductance, as-
trocyte cell volume regulation, and facilitation of glutamate up-
take (Olsen et al., 2006; Dibaj et al., 2007; Djukic et al., 2007;
Kucheryavykh et al., 2007; Seifert et al., 2009). Increased Kir4.1
expression and function are associated with astrocyte maturation
(Seifert et al., 2009), whereas reduced channel expression and/or
activity is associated with the CNS pathologies such as epilepsy
(Ferraro et al., 2004; Scholl et al., 2009), Alzheimer’s disease (Wil-
cock et al., 2009), amyotrophic lateral sclerosis (Kaiser et al.,
2006; Bataveljić et al., 2012), spinal cerebellar ataxia (Magaña et
al., 2013), and pain (Vit et al., 2008). Pharmacological inhibition,
knock-down, or complete knock-out of this channel results in
astrocytes with increased membrane resistance, depolarized rest-
ing membrane potentials, and in extracellular potassium dynam-
ics (Olsen et al., 2006; Kucheryavykh et al., 2007; Seifert et al.,
2009; Chever et al., 2010; Sibille et al., 2015). Furthermore, stud-
ies using glia-specific conditional Kir4.1 knock-out mice or
siRNA-mediated silencing of the gene indicate that loss of this ion
channel results in aberrations in glutamate homeostasis (Djukic
et al., 2007; Kucheryavykh et al., 2007), possibly by affecting as-
trocyte resting membrane potential or some other unknown
direct/indirect interaction between Kir4.1 and glutamate trans-
porters. In addition to cell-intrinsic glial cell dysfunction, loss of
Kir4.1 affects neuronal function, as indicated by alterations in

hippocampal short-term plasticity (Sibille et al., 2014). Further-
more, ataxia, seizures, and early postnatal death (before postnatal
day 25) in mice lacking Kir4.1 underscore the importance of the
channel for normal CNS function. Mutations in the Kir4.1 gene
(KCNJ10) are causative for the autosomal recessive disorder,
SeSAME/EAST Syndrome (Seizures, Sensorineural deafness,
Ataxia, Mental retardation and Electrolyte imbalance/Epilepsy,
Ataxia, Sensorineural deafness and Tubulopathy) in human pa-
tients (Bockenhauer et al., 2009; Scholl et al., 2009). Neurological
features of this syndrome include early onset seizures, ataxia,
epilepsy, sensorineural hearing loss, cognitive impairments, and
developmental delay. Furthermore, there exist subsets of patients
diagnosed with autism and seizures who harbor mutations in the
Kir4.1 channel (Sicca et al., 2011). These data suggest that glial
Kir4.1 serves an important role in early CNS neuronal develop-
ment and functioning.

Kir4.1 dysfunction in the neurodevelopmental
disorder of Rett syndrome
Rett syndrome (RTT) is a devastating neurodevelopmental disorder,
which is caused by spontaneous mutations in the X-linked transcrip-
tional regulator methyl CpG binding protein 2 (MeCP2) in �95%
cases (Neul et al., 2010). MeCP2 binds to methylated or unmethyl-
ated DNA to modulate gene transcription (Chahrour et al., 2008).
RTT is a leading cause of cognitive, motor, and communication
impairment in females, affecting �1:10,000–15,000 female births
worldwide each year. Loss of speech, seizures, ataxia, dystonia, ste-
reotypies, and irregular breathing with hyperventilation/apnea while
awake, difficulty swallowing, and pervasive growth failure, along
with severe gastrointestinal disorders are just some of the problems
that plague RTT patients (Neul et al., 2010). Although typically
thought of as a neuronal disease, a recent study showed that reex-
pression of MeCP2 exclusively in astrocytes ameliorates or prevents
overt symptoms in animal models of RTT (Lioy et al., 2011), dem-
onstrating that astrocytes contribute significantly to the etiology of
the disease. However, the mechanisms by which astrocytes contrib-
ute to RTT have not yet been identified.

RTT shares many common features with the SeSAME/EAST
syndrome, which is caused by loss-of-function mutations in
Kir4.1. The constellation of SeSAME/EAST syndrome neurolog-
ical symptoms includes severe developmental delay, early onset
seizures (�3– 6 months of age), ataxia, lower motor extremity
weakness, and sensorineural deafness (Scholl et al., 2009; Tang et
al., 2010). The onset and early progression of neurological symp-
toms may be explained by reductions in functional Kir4.1, which
typically demonstrates marked upregulation during late fetal and
early postgestational development in human CNS (Kang et al.,
2011; Fig. 1). Similar developmental increases in Kir4.1 mRNA
and protein are observed in rodents (Poopalasundaram et al.,
2000; Dibaj et al., 2007; Nwaobi et al., 2014). It was demonstrated
that the transcriptional upregulation of KCNJ10 is coincident
with reductions in DNA methylation patterns of the gene. Ma-
nipulation of the methylation status of KCNJ10 was sufficient to
modify gene transcription (Nwaobi et al., 2014). As with many
highly transcribed genes, the promoter region of KCNJ10 is lowly
methylated. Given that MeCP2 binds to lowly methylated gene
promoters to activate gene transcription (Yasui et al., 2007), it
was postulated that MeCP2 may directly regulate KCNJ10 gene
transcription. Supporting this, we observed a significant differ-
ence in Kir4.1 protein expression and function in a commonly
used murine model of RTT (M. L. Olsen, V. A. Cuddapah, N. L.
Pacheco, unpublished results). Interestingly, reduced Kir4.1 pro-
tein loss was observed early in postnatal development and before
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the observation of RTT-like symptoms in mice. A ChIP assay
revealed a direct interaction between the MeCP2 protein and the
Kir4.1 gene promoter in WT mice that was absent in RTT mice.
Together, these data suggest that MeCP2 positively modulates
Kir4.1 gene transcription. Current studies are under way to de-
termine whether alterations in astrocyte Kir4.1 expression and
function play a direct role in RTT pathogenesis.

Dysfunction of astrocyte Kir4.1 occurs early on in
Huntington’s disease model mice
Huntington’s disease (HD) is characterized by motor, cognitive,
and psychiatric disturbances associated with neuronal dysfunc-
tion and atrophy of the striatum and other brain areas. HD is
caused by an expanded chain of polyglutamines localized to the
N-terminal region of the huntingtin protein that causes intracel-
lular accumulation and aggregation of mutant huntingtin (Man-
giarini et al., 1996). The molecular, cellular, and basal ganglia
circuit mechanisms that produce disease phenotypes remain in-
completely understood, although effort has focused on mutant
huntingtin (mHTT) expression within neurons. Several recent
studies suggest that astrocytes are also involved in HD (Shin et al.,
2005; Bradford et al., 2009; Faideau et al., 2010), which extends
data showing that brains from HD patients and from mouse
models of HD have mHTT accumulation in striatal astrocytes
(Shin et al., 2005; Faideau et al., 2010). Much remains unknown
about how astrocytes contribute to HD pathogenesis.

Recently, it was discovered that Kir4.1 potassium ion channel
expression was decreased in astrocytes that express mHTT (Tong
et al., 2014), with little or no evidence for reactive astrogliosis at
symptom onset in the transgenic R6/2 and knock-in Q175 mouse
models of HD. The loss of a K� conductance depolarized astro-
cytes and medium spiny neurons in vitro and likely contributed
to elevated levels of K� that were measured in vivo within the
striatum of HD model mice (Tong et al., 2014). Moreover, res-
cuing the loss of astrocyte Kir4.1 reduced several deficits associ-
ated with HD mouse models (Tong et al., 2014). Unexpectedly,

restoring the loss of astrocyte Kir4.1 rescued astrocyte glutamate
transporter Glt1 expression. This serendipitous observation was
of relevance to the human disease because Glt1 levels are known
to be reduced in HD and because Glt1 is heavily implicated in
disease mechanisms (Liévens et al., 2001; Miller et al., 2008;
Estrada-Sánchez and Rebec, 2012). Further detailed studies to
explore signaling by astrocyte Kir4.1 channels, Glt-1 expression,
and their functional relevance are needed. Nevertheless, the avail-
able data suggest that basal ganglia circuit level defects in HD and
other brain disorders may be partly remedied by correcting key
astrocyte dysfunctions that have ensuing consequences for neu-
rons, microcircuits, and their outputs.

Regulation of Kir4.1 by intracellular spermine
Unlike typical voltage-gated ion channels, which gate in response
to membrane depolarization, the pore of Kir4.1 is blocked at
depolarized potentials by Mg 2� ions and polyamines. At or near
the reversal potential for potassium (EK), the block is removed
and K� ions permeate the pore (Oliver et al., 1998; Tada et al.,
1998). The direction of flux is determined by the electrochemical
gradient for K�. Kir4.1, as originally described, was characterized
as having intermediate rectification properties (Tada et al., 1998).
An attractive idea put forth in this study was that features of
channel rectification would allow for both K� influx and efflux
through the same channel, thus making this channel ideally
suited for the regulation of K� concentrations. The rectification
properties of Kir4.1, like all other inward-rectifying K� channels,
are governed by intracellular polyamines (Guo and Lu, 2002).
(Oliver et al., 1998). Polyamines such as spermine are ubiquitous
biogenic molecules essential for all mammalian cells (Pegg,
2014). Spermine is implicated in many cellular processes ranging
from transcription to nucleic acid stability. Intriguing, spermine
is selectively accumulated in astrocytes (Laube and Veh, 1997)
and physiological concentration of polyamine is crucial for
the opening status of connexin43 (Skatchkov et al., 2000;

Figure 1. KCNJ10 expression is upregulated during late fetal and early postnatal development. In human cortex, KCNJ10 expression begins to show significant increase during late middle to late
fetal development and continues to increase through early childhood. Expression stabilizes between early (�6 years of age) and middle to late childhood (12 years of age). Similar temporal patterns
of expression were observed in amygdala, hippocampus, striatum, and medial dorsal nucleus of the thalamus (data not shown). Figure reprinted with permission (Kang et al., 2011).
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Skatchkov et al., 2014). Therefore, the
polyamine spermine may be critical for
the integrative function of astrocytes at
the syncytial level. For example, hold-
ing the cytoplasmic concentration of
spermine at 1 mM, a physiologically rel-
evant concentration (Kucheryavykh et
al., 2008; Skatchkov et al., 2014), while
applying 10 –100 �M glutamate exter-
nally to activate Na �-dependent gluta-
mate uptake resulted in an increase of
intracellular Na � concentration of �10
mM and a switch of K � currents from
weakly to strongly rectifying in both
cortical astrocytes and retinal Müller
glia (Kucheryavykh et al., 2008). These
data suggest that Na �, such as through
glutamate transporters, can optimize
glial Kir4.1 function. Interestingly, pol-
yamine biosynthesis and concentrations
vary during cell cycle progression (Oredsson,
2003) and differing metabolic demands
on the cell (Kauppinen and Alhonen,
1995). It is conceivable that the gating
properties of Kir4.1, and therefore flux
through the channel in astrocytes, are
dependent on parameters that govern
astrocyte polyamine and Na � concen-
trations. Given that Kir4.1 is expressed
in astrocytes throughout the CNS, intracellular polyamine and
Na � concentrations may permit astrocytes to customize ion
flux according to regional demands.

Mutations in the Kir4.1 gene, KCNJ10
As mentioned above, mutations in the Kir4.1 gene, KCNJ10,
are causative for SeSAME/EAST syndrome in human patients.
The predicted structure of a single Kir4.1 subunit, the identi-
fied mutations, and the respective amino acid changes are
shown in Figure 2. Deficits in channel function were revealed
using heterologous expression systems for each identified mu-
tation. Homomeric expression of five mutations identified in
the human population (R199Stop, C140R, T164I, G77R, and
R297C) revealed a near complete loss of function at physio-
logical pH (Sala-Rabanal et al., 2010; Tang et al., 2010). In
contrast, R65P and A167V mutants conducted K � ions, but
significantly less so than WT KCNJ10 (Sala-Rabanal et al.,
2010). Coexpression with the Kir5.1 subunit, which is thought
to form heteromeric channels with Kir4.1 in some instances,
did not rescue channel dysfunction of Kir4.1 mutants. In con-
trast, channel function was rescued with coexpression with
wild-type Kir4.1 channels (Sala-Rabanal et al., 2010), suggest-
ing that, in humans, Kir4.1 is composed of homomeric
subunits.

Channels with signaling functions in astrocytes
Functions for signaling channels range from regulation of brain
development to synaptogenesis, synaptic transmission and plas-
ticity, and functional neuron-astrocyte-vascular coupling (Lalo
et al., 2011; Illes et al., 2012; Scemes and Spray, 2012; Filosa et al.,
2013; Verkhratsky et al., 2014).

TREK-1 as a glutamate release channel and TWIK-1
as a sensor of glutamatergic transmission
In the quest for a full understanding of K� channel expression
profiles, TWIK-1 and TREK-1, two of the two-pore domain K�

channel (K2p) isoforms, came into the focus as promising candi-
dates (Fig. 3; Cahoy et al., 2008). Interestingly, membrane
TREK-1 provides a fast glutamate release pathway upon activa-
tion of G�i coupled GPCR, and glutamate release is triggered by
interaction of dissociated G�� with the N terminus of TREK-1
channels (Woo et al., 2012). However, whether TWIK-1 contrib-
utes as a classic K� channel to the astrocyte’s passive conductance
is not yet resolved (Zhou et al., 2009; Wang et al., 2013; Hwang et
al., 2014). Interestingly, this channel has attracted attention be-
cause of its peculiar ion conduction and trafficking features. Sim-
ilar to kidney tubular and pancreatic � cells, a large amount of
TWIK-1 is retained in intracellular compartments. When traf-
ficked to the plasma membrane, TWIK-1 is a nonselective mon-
ovalent cation channel (Millar et al., 2006; Chatelain et al., 2012;
Wang et al., 2013). Recent work has demonstrated that TWIK-1
inward NH4

� currents were 40-fold larger than those carried by
K� (Ma et al., 2012), implying that TWIK-1 is an efficient NH4

�

uptake channel in astrocytes. In addition, membrane TWIK-1
expression can be regulated by Gi/Go-coupled receptors such as
the 5-HT and �2-adrenoceptor receptors (Feliciangeli et al.,
2010). The Gi-coupled metabotropic glutamate receptor 3
(mGluR3) is the predominant mGluR isoform in cortical and
hippocampal astrocytes in adult mice (Sun et al., 2013; Haustein
et al., 2014). This places mGluR3 as the predominant metabo-
tropic glutamate receptor expressed in hippocampal astrocytes
sensing dynamic changes in glutamatergic synaptic transmission,
which occur under physiological and pathological conditions in
the CNS. Both proteins, mGluR3 and TWIK-1, are highly ex-
pressed in astrocytes, prompting the hypothesis that activation of

Figure 2. Location of KCNJ10 mutations in patients with SeSAME syndrome. A schematic view of the protein is shown, with
intracellular N and C termini, two transmembrane helices (plasma membrane shown in shaded gray), and one pore. This structure
is characteristic of the inward rectifier family. Locations of mutations that were nonconducting are indicated by red circles and
reduced conductions are indicated by green circles. L166Q is a human single nucleotide polymorphism identified by PolyPhen
analysis as being “probably damaging” (purple circle). Homozygous expression of this channel resulted in reduced K � currents and
K � uptake. The respective amino acid change for each mutation is noted. Figure adapted with permission (Scholl et al., 2009).
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mGluR3 recruits cytoplasmic TWIK-1 channels to membrane in
hippocampal astrocytes (W. Wang, C. M. Kiyoshi, Y. Du, B. Ma,
M. Zhou, unpublished observation). Activation of mGluR3 in-
creased membrane TWIK-1 expression through a Rab-mediated
endosomal recycling pathway. Functionally, increased mem-
brane TWIK-1 expression was associated with elevated NH4

�

uptake. Therefore, neuronal glutamate release may regulate
TWIK-1 membrane expression and NH4

� uptake dynamically in
astrocytes, which in turn provide glutamine for neurotransmitter
renewal through the glutamate– glutamine cycle.

Best1’s role in tonic GABA release and neurological
diseases
Bestrophin (Best) is the gene responsible for a dominantly inher-
ited, juvenile-onset form of macular degeneration called Best vi-
telliform macular dystrophy. It has been shown to encode a
functional Ca 2�-activated anion channel that is activated directly
by submicromolar intracellular Ca 2� in nonneuronal tissues and
peripheral neurons (Hartzell et al., 2008). Several studies have
suggested the function of Best in various physiological processes
such as normal vision and cell volume regulation (Hartzell et al.,
2008; Milenkovic et al., 2015). In the brain, Best1 was found to be

largely expressed in astrocytes (Park et al., 2009; Oh et al., 2012),
especially at the microdomains near synaptic junctions (Woo et
al., 2012; Park et al., 2013). As an ion channel, Best1 shows a
relatively high permeability to large anions, including glutamate
and isethionate, along with chloride ions (Park et al., 2009; Park
et al., 2013). It has been demonstrated that astrocytes release
glutamate via Best1 (Woo et al., 2012), which then targets and
activates synaptically localized, GluN2A-containing NMDA re-
ceptors in hippocampal CA1 pyramidal neurons (Han et al.,
2013) to modulate hippocampal synaptic plasticity (Park et al.,
2015).

In addition to glutamate, Best1 has a significant permeability
to gamma aminobutyric acid (GABA) and mediates its tonic re-
lease from astrocytes in cerebellum to strongly inhibit neuronal
excitability (Lee et al., 2010). GABA release from astrocytes may
contribute significantly to tonic release of GABA observed in
many brain regions under physiological conditions, as well as
under various pathological conditions. Tonic inhibition is highly
correlated with the presence of cytosolic GABA in cerebellum and
hippocampus and other brain regions (Yoon et al., 2011); tonic
inhibition was high and immunostaining for GABA in astrocytes
was high in cerebellum, whereas tonic inhibition was low and

Figure 3. Role of astrocyte K � and signaling channels. Shown is a confocal image of a hippocampal astrocyte in situ revealed by intracellular loading of Alexa Fluor-488 (courtesy of Jonathan
Zapata). Scale bar, 20 �m. A, Kir 4.1 functions as a major K � channel establishing hyperpolarized astrocyte membrane potential and spatially redistributing the K � concentration. B, Cx43
hemichannels modulate basal glutamatergic synaptic activity through ATP signaling. In basal conditions, Cx43 hemichannels boost hippocampal excitatory postsynaptic activity through ATP
signaling. A possible scenario is that Cx43 hemichannels release ATP, which activates P2 receptors on CA1 pyramidal cells that increase glutamatergic postsynaptic activity. C, Astrocytic GABA is
produced via putrescine degradation pathway with a key biosynthetic enzyme, MAOB. GABA release from Best1 contributes significantly to the tonic GABA release under physiological and various
pathologic conditions. D, Activation of mGluR3 translocates TWIK-1 from recycling endosome to membrane that enhances NH4

� uptake, which may facilitate glutamine-glutamate cycle for
replenishment of neurotransmitters in neurons.
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immunostaining for GABA was low in astrocytes in CA1 hip-
pocampus. Astrocytic GABA is produced via putrescine degrada-
tion pathway with monoamine oxidase B (MAOB) as a key
biosynthetic enzyme (Yoon et al., 2014). Therefore, under phys-
iological conditions, astrocytic GABA is synthesized by MAOB
and released by Best1 when there are sufficient levels of cytosolic
GABA.

Astrocytic GABA is elevated in pathological conditions such
as Alzheimer’s disease. Reactive hippocampal astrocytes near am-
yloid plaques contain high levels of GABA (Jo et al., 2014; Wu et
al., 2014), show elevated putrescine and use MAOB to produce
GABA (Jo et al., 2014). Because reactive astrocytes in Alzheimer’s
disease model mice showed elevated Ca 2� levels (Kuchibhotla et
al., 2009), the synthesized GABA was readily released through
Best1 (Jo et al., 2014). Interestingly, elevated GABA is associated
with altered distribution patterns of Best1, from a microdomain-
specific to soma- and process-specific expression patterns (Jo et
al., 2014). These results demonstrate the dynamic nature of Best1:
the functional switch and differential trafficking from physiolog-
ical conditions to pathological conditions and from glutamate
releasing at synaptic junction to tonic GABA release at soma and
processes. In conclusion, Best1’s role in GABA release may be
important in the context of gliosis observed in neurodegenerative
diseases.

Astrocyte connexin hemichannels shape basal
synaptic transmission
Astrocytes express high level of connexins (Cxs), the protein sub-
units forming gap junction channels that mediate the extensive
astrocyte network communication (Pannasch and Rouach,
2013). Each gap junction channel is formed by the alignment of
two hemichannels (HCs), and the connexons are composed of six
transmembrane proteins. In astrocytes, the primary connexons
are Cxs 43 and 30. Astrocyte Cxs contribute to synaptic strength
or memory in physiological conditions, notably by regulating
neurometabolic coupling (Rouach et al., 2008), extracellular ho-
meostasis (Wallraff et al., 2006; Pannasch et al., 2011), astrocyte
synapse coverage (Pannasch et al., 2014), or gliotransmitter re-
lease (Stehberg et al., 2012; Torres et al., 2012; Chever et al.,
2014). In contrast to gap junctions, astrocyte hemichannels me-
diate direct exchange with the extracellular space and, remark-
ably, Cxs also demonstrate channel-independent functions
involving protein interactions and/or cell adhesion (Theis et al.,
2005; Elias and Kriegstein, 2008; Pannasch and Rouach, 2013;
Pannasch et al., 2014). Cx HCs represent an important pathway
of release or uptake of ions and signaling molecules in astrocytes
(Giaume et al., 2013; Cheung et al., 2014). Initially, Cx HCs were
thought to be activated primarily during pathological situations
because their opening was viewed as deleterious by inducing loss
of cytoplasmic integrity and neurotoxic damage (Giaume et al.,
2013; Cheung et al., 2014). However, several recent studies sug-
gest emerging physiological functions that include the regulation
of synaptic activity and memory through gliotransmitter release
(Stehberg et al., 2012; Torres et al., 2012; Cheung et al., 2014;
Chever et al., 2014).

Astrocyte Cx43 HCs are open under resting conditions in
acute hippocampal slices and tune basal glutamatergic synaptic
transmission via ATP signaling (Chever et al., 2014). To investi-
gate whether such opening of Cx43 HCs regulates basal synaptic
transmission, EPSCs from hippocampal CA1 pyramidal cells
were investigated. A rapid decrease in EPSCs was seen upon acute
inhibition of Cx43 HCs with the mimetic blocking peptide
Gap26, indicating that astrocyte Cx43 HCs endogenously

strengthen basal glutamatergic synaptic transmission. Remark-
ably, basal extracellular ATP levels, measured locally and in real
time in hippocampal slices using a luciferin–luciferase lumines-
cence assay, were also concurrently decreased by the Gap26-
blocking peptide, suggesting that ATP is released tonically
through Cx43 HCs in resting conditions. To investigate whether
ATP release by Cx43 HCs modulates excitatory synaptic trans-
mission in hippocampal slices through direct activation of ATP
purinergic receptors, the ATP P2X and P2Y receptors were
acutely blocked. This treatment mimicked the decreased excit-
atory synaptic transmission induced by Gap26 inhibition of Cx43
HCs and also occluded the effect of Gap26 on synaptic transmis-
sion. Basal extracellular ATP levels resulting from Cx43 HC-
mediated ATP release thus exert a tonic facilitation of hippocampal
excitatory transmission by direct activation of ATP purinergic recep-
tors. Together, these data reveal Cx43 HCs as a novel physiological
pathway of ATP release strengthening the moment-to-moment ex-
citatory synaptic transmission in the hippocampus.

Conclusions
Astrocytes are the most numerous cells in the CNS. They tile the
entire brain and serve vital trophic, active, and homeostatic roles
(Barres, 2008). Growing evidence indicates that astrocytes con-
tribute to neurological and psychiatric disorders (Maragakis and
Rothstein, 2006; Barres, 2008; Ilieva et al., 2009; Nedergaard et al.,
2010; Agulhon et al., 2012b; Clarke and Barres, 2013). However,
key questions about astrocyte engagement in neural circuits, such
as whether active or homeostatic roles dominate, remain unclear.
Overall, deciphering the precise settings under which astrocytes
contribute to neuronal circuit function in health and disease has
proven challenging (Khakh and McCarthy, 2015) and a clearer
understanding of the critical processes mediated by this cell type
will illuminate how the healthy CNS functions and provide in-
sight into pathological disease mechanisms.
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